We Communicate by Ionospheric Reflection not Refraction

Mike Hasselbeck WB2FKO

Central States VHF Conference July 2024

This talk deals exclusively with ionosphere

No tropospheric ducting, rain scatter, etc

Refraction vs Reflection (Optics and RF are E-M waves)

Intuitive model of the ionosphere

Ignore secondary magnetic field effects

Analysis: 50 MHz vs 144 MHz

REFLECTION

REFLECTION RAY TRACING

Specular Reflection: $\theta_1 = \theta_2$

Diffuse Reflection

REFRACTION: Deflection in the path of an electromagnetic wave as it passes through different media

Index of refraction

Air: 1.0 Water: 1.33 Glass: 1.5

REFRACTION RAY TRACING

"Free electrons cause radio waves to slow down, refract, and bend...

... reflection is really the wrong term."

Frank Donovan W3LPL on RF & HF Propagation

C.org Subscribe

Share

% Clip

=+ Save

...

"You're not bouncing off of anything...

...the signal encounters a different index of refraction...

...refraction bends the signal back down."

"...the Sky Wave is where you've gone up and you're refracting off the E- and F-layers..."

The lonosphere, Shortwave Radio, and Propagation

MIT Film & Video Production club 3.48K subscribers

Share

💥 Clip

...

ARRL Instructor Resource: General Class License

Figure 8.2 — Radio waves are refracted (bent) in the ionosphere, so they return to Earth far from the transmitting station. Without refraction in the ionosphere, radio waves would pass into space. (Not to scale)

From the General Class License Question Pool*:

G3C02 (A)

 $\sim \sim$

What is meant by the term "critical frequency" at a given incidence angle?

A. The highest frequency which is refracted back to Earth

- B. The lowest frequency which is refracted back to Earth
- C. The frequency at which the signal-to-noise ratio approaches unity
- D. The frequency at which the signal-to-noise ratio is 6 dB

*http://www.arrl.org/general-question-pool

William Orr, W6SAI:

"Propagation ... is primarily by *ionospheric reflection*."

Willebrord Snellius: 1580--1626

Snell's Law of Refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Total Internal Reflection in Glass Fiber

For $\theta_1 > 41^o$ Snell's Law has no solution!

These rays are completely reflected – there is no refraction

TOTAL INTERNAL REFLECTION:

Laser light launched into liquid Laminar flow streams

Courtesy of Dr Alexander Albrecht, UNM Physics & Astronomy

Propagation through stratified layers of ionosphere

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 = n_3 \sin \theta_3 = \ldots = n_7 \sin \theta_7$$

 $n_1 \sin \theta_1 = n_7 \sin \theta_7$

 $\theta_7 < 90^{\circ}$

Refraction alone cannot return a radio wave back to the earth's surface

In vertically stratified layers like the **ionosphere**, no amount of refraction can bend an electromagnetic wave beyond 90 degrees. Partial reflections will occur at each interface where there is an index mismatch

Augustin-Jean Fresnel 1788-1827

... but Fresnel **reflection** is not the same thing as **refraction**.

SIMPLE MODEL OF IONOSPHERE

SIMPLE MODEL OF IONOSPHERE

Equal density of IONS and ELECTRONS

The ensemble is electrostatically neutral: PLASMA

It's not just the **Electrons** – The <u>Crucial</u> Role of lons

Charles-Augustin de Coulomb 1736--1806

Coulomb's Law: Like-Charges Repel

In the absence of positive ions..

 \bigcirc

(-)

Θ

(-)

 (\Box)

Upset the charge balance by introducing an *extra negative charge*

Plasma does not fly apart

Mobile electrons re-arrange to screen electric field of the extra charge

Debye Screening Radius

Outside the radius, plasma remains electrically neutral The extra charge is "invisible"

Peter Debye 1884--1966

Charge screening cannot happen instantly!

What are the dynamics, i.e. time response?

The Drude Model

Paul Drude 1863--1906

Drude's Model of Plasma Oscillations: Interplay of Two Forces

• Electric Field (Coulomb, Gauss)

• Newton's Second Law of Motion (*F* = *ma*)

C.A. de Coulomb

F. Gauss

I. Newton

Upset the charge balance by introducing a line of *negative charge*

Upset the charge balance by introducing a line of *negative charge*

Highly mobile negative electrons are quickly repulsed Heavy positive ions remain stationary

Because electrons are so light,

they OVERSHOOT the static screening distance

Unscreened positive ions exert

attractive electric force on the electrons

Electrons stop and get pulled back by the ions

But electrons have inertia and

overshoot the equilibrium position ...

... until they are stopped again by attractive Coulomb force of the positive ions

And the process repeats. This is collective charge oscillation

Classical picture of plasma oscillations Modeled similar to a vibrating spring or swinging pendulum

HARMONIC OSCILLATOR

HARMONIC OSCILLATOR: Sinusoidal motion with a characteristic frequency

Natural (resonant) frequency of plasma oscillations $(f_p)^*$

$$f_p = \frac{1}{2\pi} \sqrt{\frac{Nq^2}{m\epsilon_0}}$$

N: Density of electrons (or ions)

q : Charge on the electron

m: Mass of the electron

 ϵ_0 : Physical constant

* Also known as the critical frequency

REFRACTIVE INDEX OF PLASMA (IONOSPHERE)

$$\sqrt{1 - \left(\frac{f_p}{f}\right)^2} = \sqrt{1 - \kappa \frac{N}{f^2}}$$

N: Density of electrons (or ions)

- f : Frequency of electromagnetic wave
- κ : Constant

$$\sqrt{1-\kappa \frac{N}{f^2}}$$

Weak Ionization \square *N* is small \square Ionosphere Index $\approx 1 \square$ Transparent

$$\sqrt{1-\kappa \frac{N}{f^2}}$$

Moderate Ionization: Ionosphere refractive index < 1

Depends on plasma density, radio frequency, incidence angle, polarization

$$\sqrt{1-\kappa \frac{N}{f^2}}$$

What happens when:
$$\kappa rac{N}{f^2} > 1$$
 ???

Refractive index of ionosphere becomes imaginary

Ionosphere appears *metallic* to the electromagnetic wave

Metallic ionosphere is opaque

Electromagnetic wave is completely **<u>REFLECTED</u>**

VHF PROPAGATION

Use classical plasma model to calculate ionosphere reflection at 50 and 144 MHz

Calculated Fresnel reflectivity of *E*-layer with increasing ionization

QUESTION: When you look in the mirror ... Are you seeing your reflection or your refraction?

ACKNOWLEDGEMENTS

Oliver Heaviside 1850-1925 Arthur Kennelly 1861-1939 Edward Appleton 1892-1965